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ABSTRACT  

Future fighter pilots and remote operators will need advanced decision and attention support to cope with 

increased complexity, uncertain information and multi agent coordination. Monitoring the pilot’s mental 

state and awareness and making it available to the system could enable better human-system collaboration 

and increased joint performance. Research has shown that different psycho-physiological measurements 

techniques can be used to assess multiple cognitive and affective states such as mental workload, attention, 

fatigue as well as job-related variables such as task difficulty and task completion. However, little work has 

been devoted to real-time assessment of multiple sensing techniques and the temporal sequence of signs. We 

have developed an experimental AI pipeline for investigating fighter pilot mental states in real time using eye 

tracking (saccades, fixation times etc), electrodermal activity (EDA) and heart rate variables (e.g., HR and 

HRV). The system utilizes a hybrid analytics approach comprising data stream processing and machine 

learning (ML) which enable real time analysis and time-based inference of the different signal events. We 

report on the advantages and disadvantages of the approach, present results from ongoing empirical 

experiments with the system and discuss possible applications for advanced attention guidance.  
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1.INTRODUCTION 

Adaptive Automation [1,2] is a promising approach to support operators and keep their workload at 

appropriate levels. Today, there are a number of sensor technologies that can be worn or embedded in our 

physical work environments such as eye tracking glasses and smart watches. These developments make it 

possible to create advanced applications that track pilots' health and cognitive states in relation to the 

operational tasks and that can provide support - when needed [3]. Hence, future work environments will 

likely measure the performance, stress and level of attention of individuals and groups with the goal of 

optimizing and balancing tasks individually and among groups. However, this approach requires methods 

and algorithms to adequately classify and assess the cognitive state of the operator in terms of workload, 

stress and attention levels in real time [4,5,6] which can only be achieved through the use of 

psychophysiological sensors. Future applications include pilot environment for future military concepts, 

manned as well as unmanned, with suitable levels of autonomy to assist the pilot and decision support to 

cope with effects of information overload. Further, a separation between various types of automation for 

specific tasks with known user cognitive demands could be beneficial [7]. Our research aims to explore the 

potential of pattern identification of various psychophysiological responses to workload induced tasks and 

attention. The goal is to understand the relationship among these responses and signals to be used for future 

adaptive automation technologies, with the aim of reducing operators’ mental workload, improving attention, 

hence, securing performance levels.  

In this paper, we present explorative and ongoing work on a sequential time-based analysis engine used to 
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classify and validate multiple sensor data and psychophysiological phenomena in real time. Moreover, we 

present the data collection approach and experimental setup to validate hypotheses on the patterns of the eye, 

heart and electrodermal response to external stimuli in a pilot environment. First, we provide the background 

with regards to the psychometric measurements for assessing cognitive states that we use in this research. 

Second, we discuss the AI-pipeline for processing data streams in real time. Third, we present our 

experimental setup using eye tracking, heartrate and electrodermal response in a virtual reality environment. 

In the remainder of the paper, we present pros and cons of the approach. 

2. BACKGROUND 

Psychophysiological measures such as heart rate (HR), heart rate variability (HRV), electrodermal activity 

(EDA) as well as eye movements are suitable candidates to investigate subject’s stress, workload and 

attention levels [8,9]. Furthermore, measurements of psychophysiological response “have the advantages of 

objectivity and are well suited to continual monitoring, supporting augmented cognition for the stressed 

operator” [10, p 811]. In high complexity environments such as airplane piloting it might even be necessary 

to simultaneously measure several attributes in order to capture the state of operators’ cognitive processes 

[8]. However, most studies have looked at single physiological parameters and their correlation to the human 

cognitive states rather than combining multiple variables to strengthen the analytic approach.  

2.1 Psychophysiological Responses 

Heart Rate and Heart Rate Variability 

Fluctuations of the heart are caused by feedback from the central nervous system (CNS) to the peripheral 

autonomic receptors. HR and HRV are common measures used to assess mental workload levels in 

individuals. HRV tracks fluctuations in heart rate beat-to-beat and has proven to be indicative of elevated 

workload levels [11]. Studies comparing differences in HRV measures across different levels of workload 

have observed significant differences in HRV between low and high workload [c.f. 12]. Part of the evidence 

suggests that an increased workload presents itself as an elevated HR and decreased HRV [13, 14]. Even 

though HR and HRV appear to present as inverted to each other, researchers have argued that they display 

different bodily mechanics and are thus useful to measure in parallel [15]. 

In order to record HR activity, it is necessary to collect data of the inter-beat interval (IBI) which can further 

be converted to the well-known measure of beats per minute (bpm). The HRV can be acquired by similar 

methods, however this measure is highly sensitive to noisy data. Skipped or extra beats of the heart affect the 

HRV data heavily and can lead to serious errors if not corrected [4]. Other drawbacks of using data obtained 

from the heart include the sensitivity of HR towards emotional stress as well as physical effort [6]. 

Electrodermal Activity 

EDA is a psychophysiological measure which records changes in skin conductance caused by fluctuations in 

perspiration level. Perspiration is another physiological attribute controlled by the ANS and can thus be 

connected to mental state fluctuations. EDA is widely used in research in order to study both physiological 

and psychological constructs. 

In order to record EDA activity, two techniques have been proposed and are currently in use - exosomatic 

and endosomatic measurement. Exosomatic measurement is the most commonly used of the two and 

functions by applying a small direct current generated by an external resistor to the skin [14, 16]. When 

exposed to an external stimulus, the electrodermal level (EDL) either increases (if data is presented as skin 

conduction) or decreases (if presented as skin resistance). These fluctuations can then be classified as the 

phasic electrodermal responses (EDRs) [14, 16]. In some cases, EDRs are elicited without the presence of 
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known external stimuli and are then referred to as nonspecific EDRs (NS. EDRs). The Society for 

Psychophysiological Research Ad Hoc Committee on Electrodermal Measures [16] recommends a latency 

window of 1-3 sec for determining if an EDR has been caused by the chosen stimulus, however latencies of 

4 sec and longer can occur. EDRs appearing quicker than 1 sec are less likely to be accurate due to 

processing speed, ANS response speed and the time it takes for sweat to penetrate the skin. 

When recording EDA data, it is important to take note of the individual variability in EDR that is likely to 

occur given demographic differences such as age, gender and culture. Evidence shows that older adults (over 

60) experience smaller EDRs than do younger adults. This can likely be attributed to changes in the 

peripheral and central nervous system caused by age. The amount of active sweat glands also decreases with 

age and could be a reason for the decrease in EDR levels [16]. 

Eye Movement 

Eye movement measure is most frequently used in research on cognitive processes and mental states as it 

provides an insight on operator attention allocation. Since visual attention is the primary step in cognitive 

processing, using eye movement as a psychophysiological measure could benefit in tracking the operators’ 

situational awareness (SA) and mental state [17, 18]. Saccade rate, fixation frequency and duration are some 

of the measures potentially reflective of cognitive workload levels [19]. Blink rate also serves as a measure 

for cognitive workload as it correlates with other eye movement measures [4]. 

Eye tracking and eye movement measures prove a good alternative to measuring operator workload and SA 

compared to other commonly used measures such as subjective assessments due to eye tracking technology 

allowing uninterrupted data collection and objective observation. Out of all psychophysiological measures, 

eye movement and eye tracking data are also considered the most unobtrusive as it usually does not require 

the operator to be connected to external devices compared to e.g., EDA sensors [17]. A drawback when 

using eye tracking measures for research purposes stems from the eye being sensitive to light. If not 

controlled for, changes in e.g., ambient lightning can disturb the data [17]. If using equipment such as virtual 

reality (VR), however, lighting is always kept at a constant or can be manipulated by the researchers in 

accordance with study requirements. 

The eye movements tracked within this research study are blink rate and saccade rate. Blink rate records the 

amount of blinks the subject performs during a specified time frame (usually, seconds). Previous studies 

have observed that increase in workload and especially visual load tends to correlate with lower blink rates 

[20].  

The hypotheses based on these observations is that when operators experience higher visual load, they tend 

to avoid blinking as much so not to miss important visual cues during task performance. However, results in 

the literature vary (e.g. [21] where blink rate increased during higher task difficulty) and it has been proposed 

that differences in blink rate could be indicative of the kind of task subjects are expected to perform [22]. 

Saccades are the movement of the eye between two fixations and are known to be the fastest movement of 

the human body. An interesting feature of saccadic movement is that the subject is virtually blind for the 

duration of the saccade [22]. Different saccadic features are used in a variety of research studies, 

e.g., whether saccadic rate can be indicative of mental workload. Previous research has proposed that 

saccadic rate increases when the subject experiences higher workload (e.g. [21]). 
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3. APPROACH 

3.1 System Implementation 

The pipeline for analyzing eye tracking, EDA and HR was developed using Apache Flink [23]. Flink is a 

programming framework and distributed processing engine for computations over unbounded and 

bounded data streams. Flink is particularly suited for the task of identifying events in continuous data 

streams and compute the temporal relationship among them. Figure 1 shows the overall architecture of the 

pipeline.  

 

Figure 1: Architecture of the pipeline for analyzing psychophysiological data in real time.  

Temporal Pattern Detection Algorithm 

A general temporal pattern detector was implemented in Flink. The goal was to be able to detect certain 

patterns expressed by sets of psychophysiological variables as they change over time. The sought-after 

pattern was defined using a set of temporal conditions. A temporal condition is bound to a variable, and 

defines a spatial range and a temporal range for the variable. The spatial range is defined by a lower and an 

upper bound for the variable. The temporal range is defined by a time offset from the start of the matched 

pattern and a tolerance. The tolerance sets the range of time around the offset that the condition needs to be 

fulfilled in. For the condition to be fulfilled, the value of the variable needs to be between the defined lower 

and upper bound and the distance in time from offset needs to be at most tolerance. Once a condition is 

fulfilled, it is marked as fulfilled until the detector is reset. Once all conditions in the set are fulfilled, the 

detector signals that the pattern has been detected using a predefined output packet. If a condition is failed, 

meaning that the specified temporal range has passed without the condition being fulfilled, the pattern 

detector is reset and tries to match the pattern from the beginning. Figure 2 shows the principle of the 

temporal pattern detector. 

 

Figure 2: The temporal pattern detection engine classifies events on singular channels and looks 
for overarching temporal patterns across the channels in real time. In this case the system looks 

for a pattern and sequence beginning with a pupil fixation (possible object detection), followed by a 
small HR disturbance and a subsequent rise in EDA (within 1500 ms).  
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3.2 Experimental Setup 

The current experimental setup consists of a HTC Vive Pro Eye Virtual Reality system [24] with integrated 

eye tracking, Shimmer3 for EDA and HR measurements. A virtual work environment was developed for 

VIVE in Unity, displaying an operator task similar to NASA’s MATB-II [25] placed in 3D space to simulate 

a cockpit environment. MATB-II is a software that simulates cockpit tasks to evaluate operator performance 

and workload. This was developed to create a task suitable also for non-pilots. At present, we are 

investigating if it is possible – using the detector to identify and quantify - the attention level of the pilot. To 

do this, we have designed a task where the research participant is to maintain the main task (MATB-II, 

balancing tank level task) as well as identifying and classifying incoming spheres of different types (colors) 

(see Figure 3).  

Figure 3: Left: The setup to investigate temporal patterns among EDA, HR, and eye tracking 
consisting of VIVE VR goggles and Shimmer3 data collection system for capturing EDA and HR. 
Right: The user task implemented in VIVE consists of a standard modified NASA MATB-II task 
augmented with an additional attention task consistsing of identifying and classifying different 

types of spheres that show up intermittently during the test session.    

In order to interact with the experimental tasks, participants use a standard type swedish keyboard. The keys 

used for task interaction are the four arrow keys, space bar and the “Enter” key. The hypothesis is if it is 

possible for our algorithm to identify if the user can identify a “new” uncommon type of sphere, replicating a 

new unidentified object in the pilots’ 3D view.   

4. RESULTS AND DISCUSSION 

In this paper, we have presented a first take on a framework for analysing multiple real time 

psychophysiological signals for future fighter pilot applications. Our framework shows potential, and the 

system allows for more advanced real time processing such as analysing the significance and timing of fast 

paced saccade and fixation sequences in relation to the HR and EDA. This would allow a system to know 

when the operator has observed a high significance object and, potentially, assessed the situation. Moreover, 

using high frequency eye tracking it should be possible to identify and analyse pupil micropatterns and its 

potential relation to other physiological signs. Further developments could be to include frontal lobe EEG 

and FNIR.   

Machine Learning methods are promising in this context since new possibilities of identifying hidden 

patterns and relationships among eye, HR and EDA which are difficult to identify using ordinary research 

tools and methods (i.e., clustering methods etc). For example, it should be possible to apply standard LSTM 

[c.f., 26] processing to predict signs and physiological responses of a stimuli. Ready-trained Machine 
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Learning models can be integrated into our framework and, hence used in our system for real time test.  

A challenge with our approach is that the sensors used must provide data with millisecond accuracy which is 

challenging due to internal signal processing and filtering. Calibration and synchronisation are required, 

however, lag in signal processing naturally diverges from the main idea of real time assessment of the pilots 

cognitive state. Nevertheless, and to conclude, the approach proposed provide a basis for assessing and 

understanding eye tracking data more deeply, by also combining HR and EDA signals in the analysis. This 

approach is still in its infancy and more research needs to be done to validate it. Future work includes more 

applied settings for fighter pilot decision making, as well as further refinement of data collection and 

analysis. 
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